A new mixed finite-element method for H2 elliptic problems

نویسندگان

چکیده

Fourth-order differential equations play an important role in many applications science and engineering. In this paper, we present a three-field mixed finite-element formulation for fourth-order problems, with focus on the effective treatment of different boundary conditions that arise naturally variational formulation. Our is based introducing gradient solution as explicit variable, constrained using Lagrange multiplier. The essential are enforced weakly, Nitsche's method where required. As result, problem rewritten saddle-point system, requiring analysis resulting discretization construction optimal linear solvers. Here, discuss well-posedness accuracy Moreover, develop monolithic multigrid solvers systems. Two three-dimensional numerical results presented to demonstrate efficiency proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Finite Element Methods for Elliptic Problems*

This paper treats the basic ideas of mixed finite element methods at an introductory level. Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the mathematical prerequisites are kept to a minimum. A classification of variational principles and of the corresponding weak formulations and Galerkin methods—displacement, equilibrium, and mixed—is giv...

متن کامل

A Finite Element Method for Nonlinear Elliptic Problems

(2013) A finite element method for nonlinear elliptic problems. This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version. Copyright and all moral rights to t...

متن کامل

A Finite Element Method for Second Order Nonvariational Elliptic Problems

We propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of Galerkin type using conforming finite elements and applied directly to the nonvariational (nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of “finite element Hessian” and a Schur complement approach to solvin...

متن کامل

A Mixed Finite Volume Method for Elliptic Problems

We derive a novel finite volume method for the elliptic equation, using the framework of mixed finite element methods to discretize the pressure and velocities on two different grids (covolumes), triangular (tetrahedral) mesh and control volume mesh. The new discretization is defined for tensor diffusion coefficient and well suited for heterogeneous media. When the control volumes are created b...

متن کامل

A mixed multiscale finite element method for elliptic problems with oscillating coefficients

The recently introduced multiscale finite element method for solving elliptic equations with oscillating coefficients is designed to capture the large-scale structure of the solutions without resolving all the fine-scale structures. Motivated by the numerical simulation of flow transport in highly heterogeneous porous media, we propose a mixed multiscale finite element method with an over-sampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & mathematics with applications

سال: 2022

ISSN: ['0898-1221', '1873-7668']

DOI: https://doi.org/10.1016/j.camwa.2022.10.024